Select Page
M

Submit a Case

Complete the form below.
Please do not include any patient information.

Wire Fracture – Atherectomy – Case 1

Clinical Presentation

  • 62-year-old male who presented to the hospital with chest pain (CCS Class III) and was referred for protected LM-LCx PCI.

Past Medical History

  • HTN, HLD, DM, CAD s/p 4-Vessel CABG, CKD
  • LVEF 55%

Clinical Variables

  • Stress MPI: Severe anterior wall & lateral wall ischemia.
  • Prior Cardiac Catheterization: Distal LM 80-90% ISR, proximal LAD CTO, mid LAD 80-90% stenosis and retrograde fills via LIMA, proximal LCx 70-80% ISR, OM1 subtotal and fills via SVG, LPL subtotal, PRDA 60-70% stenosis; LIMA to Mid LAD patent, SVG to Distal RCA CTO, SVG to LCx OM1 proximal 90-95% ISR s/p successful PCI.

Medications

  • Home Medications: Aspirin, Ticagrelor, Atorvastatin, Fenofibrate, Metoprolol Tartrate, Ranolazine, Benazepril, Hydrochlorothiazide, Glipizide
  • Adjunct Pharmacotherapy: Ticagrelor, Bivalirudin

Pre-procedure EKG

Angiograms

Previous Next
Left coronary artery angiography
  • total occlusion of the left anterior descending (LAD) artery
  • 80-90% in-stent restenosis of the left main (LM)
  • 80-90% in-stent restenosis in the proximal left circumflex (LCx) coronary artery
1 of 13
1 of 13

Left coronary artery angiography

  • total occlusion of the left anterior descending (LAD) artery
  • 80-90% in-stent restenosis of the left main (LM)
  • 80-90% in-stent restenosis in the proximal left circumflex (LCx) coronary artery
2 of 13
2 of 13

Wiring of the LCx with a Fielder wire and a Finecross microcatheter.

3 of 13
3 of 13

Unable to cross LCx with a 1.25mm rota burr.

4 of 13
4 of 13

Pre-dilatation of the proximal LCx with a Maverick 2.0/20mm balloon.

5 of 13
5 of 13

Pre-dilatation of the lesion in the proximal LCx with a Maverick 2.0/20mm balloon.

6 of 13
6 of 13

Guidezilla support catheter used to deliver a NC Quantum Apex 3.0/8mm balloon, followed by pre-dilatation of the lesion across the LM-LCx.

7 of 13
7 of 13

Angiography of the LM-LCx after lesion pre-dilatation.

8 of 13
8 of 13

Unable to cross the LM-LCx tortuous lesion with a 1.25mm rota burr. The burr was advanced causing the wire to fracture.

9 of 13
9 of 13

Runthrough wire was introduced into the LCx, followed by laser atherectomy to modify the plaque.

10 of 13
10 of 13

Deployment of a Synergy 2.75/8mm stent in the proximal LCx, anchoring the remnant wire.

11 of 13
11 of 13

Angiography of the LM-LCx after placement of a stent.

12 of 13
12 of 13

Runthrough wire removed with follow up angiography showing remnant of the rota-wire fixed in place.

13 of 13
13 of 13

Final angiography showing successful intervention.

Post-procedure EKG

Case Overview

  • Underwent intervention of LM-LCx in-stent restenosis.
  • While performing rotational atherectomy of the LM extending into the LCx, the Rota Extra Support wire fractured in the lumen of the LCx.
  • A stent was placed in the proximal LCx, anchoring the remnant wire.
  • Procedure was continued and the patient underwent successful intervention of the LM.
  • Troponin-I peaked at 0.13 ng/ML and CK-MB peaked at 0.6 ng/mL.
  • Patient was discharged home the next day without further sequelae.

Learning Objectives

  • What is the likely explanation or reason why the complication occurred?
    • The Rota Extra Support wire was transected as the rota burr was advanced across the tortuous segment of the vessel.
  • How could the complication have been prevented?
    • Rotational atherectomy should be considered on a case by case bases, especially when the lesion is long, severely calcified and/or with severe angulation/tortuosity. Rotational atherectomy, orbital atherectomy and laser atherectomy were not suitable in this case. This case was best suited for atherectomy using a cutting/scoring balloon. Alternatively, off label use (in the USA) of intravascular Lithotripsy (IVL) for plaque modification and treatment of calcified CAD could have been considered.
  • Is there an alternate strategy that could have been used to manage the complication?
    • Snare Technique: Retrieval of a lost/remnant guidewire is feasible with a GooseNeck snare or a Triple-Loop snare. It is usually easier to retrieve a fragmented/remnant guidewire if it is located proximally in a large coronary artery. Success also depends on an operators familiarity with use of the snare and ability to align the loop of the snare to the guidewire. When using a snare, need to make sure its length is longer than the length of the guide catheter being used.
    • Multi-Wire Technique: Insert one or two coronary wires next to the remnant wire and twist the wires together so all wires become entangled, and can be removed together.
    • Balloon-Trapping Guide-Extension Catheter Technique: A balloon is used to jail the remnant wire against the lumen of a guide catheter or guide-extension catheter.
      • If a remnant wire is still within a guide catheter, retrieval using this method involves inserting another wire distal to the remnant wire, thread a balloon over it and inflate the balloon inside the guide catheter to entrap the wire between the inflated balloon and wall of the catheter, followed by removal of the entire system simultaneously.
      • If the remnant wire is outside the guide catheter, insert a second wire distal to the remnant wire and use a guide extension catheter to get the proximal part of the fractured wire into the lumen of the guide extension catheter. If successful, deliver a balloon and inflate the balloon to trap the wire between the balloon and lumen of the extension catheter, followed by removal of the entire system simultaneously.
    • Using a stent to plaster the wire should only be considered as a last resort, especially if the wire is located more proximally in a large caliber vessel.
  • What are the important learning points?
    • An interventional cardiologist who uses rotablation, must be familiar with complications associated with its use and their management.
    • NEVER use faulty or damaged equipment. If the equipment being used during a procedure is faulty or damaged, immediately remove and discarded the piece of equipment, or secure it for it to be sent back to the manufacturer.
Educational Content

ROTATIONAL ATHERECTOMY COMPLICATIONS

  • Common complications associated with rotational atherectomy are:1
    • Slow flow / No-reflow
    • Coronary Dissection
    • Coronary Perforation
    • Burr entrapment

Slow flow / No-reflow

  • It is most feared and preventable operator-dependent complication of Rotational Atherectomy (RA)
  • Incidence- 2.6% in the drug-eluting stent era2
  • Omens of slow-flow / no-reflow include sudden decelerations and visual, tactile or auditory clues of high resistance to burr advancement
  • Be mindful of incident chest pain, ST-segment elevations, hemodynamic instability, and bradyarrhythmia while burring which could signal no-reflow phenomenon
  • Prevention
    • Optimal antiplatelet and anticoagulant therapy
    • Continuous flush cocktail
    • Smaller burr sizes (Max burr to artery ratio 0.4-0.6)
    • Lower speeds (140-150K rpm)
    • Short ablation runs of 15-20 seconds
    • Pause between runs
  • Treatment
    • Correction of hypotension with fluids, vasopressors, and pacing as required
    • Administration of intracoronary vasodilators, such as adenosine, nitrates, nitroprusside, nicardipine, and verapamil administered distally in the vessel
    • If hemodynamically unstable, insertion of an intraaortic balloon pump to augment coronary perfusion pressure

Coronary Dissection

  • Dissections during RA are described and graded in standard fashion using the NHLBI classification system (A-F)
  • Incidence: 1.7% - 5.9% in the drug-eluting stent era 3
  • Like slow-flow / no-reflow, dissection can present with signs and symptoms of acute myocardial ischemia including chest pain, ST-segment elevations, and hemodynamic or electrical instability
  • Prevention:
    • Avoid rotablation in excessively tortuous vessels
    • Avoid excessive angulation while burring
    • Smaller burr sizes
  • Treatment:
    • Stop further ablation
    • Maintain wire position
    • Expeditious completion of PCI via balloon angioplasty and stenting if feasible

Coronary Perforation

  • Perforation represents a more severe variant of dissection in which disruption extends through the full thickness of the arterial wall.
  • Incidence: 0-2% in the drug-eluting stent era3
  • Coronary perforations during RA are described and graded in standard fashion using the Elis classification scheme (I-III)
  • Although RA is considered a risk factor for perforation,4 the majority of type III perforations result from balloon angioplasty 5
  • Risk factors: lesion-specific predictors of perforation include eccentricity, tortuosity, length >10 mm, and location in the right coronary artery or left circumflex artery
  • Prevention:
    • Correct burr sizing
    • Avoid aggressive burring
    • Avoid excessive angulation
    • Lower speeds
  • Treatment:
    • Stop further ablation
    • Maintain wire position
    • Discontinuation of anticoagulation
    • Prolonged balloon inflation (10-15 min) proximal or at site of injury. If still bleeding, repeat prolonged balloon inflation
    • If extravasation persists, seal the site with either occlusive coils [perforation site distal main vessel] or by implantation of polytetrafluoroethylene (PFTE) covered stent [perforation siteproximal main vessel, distal side branch which can be excluded with covered stent]
    • If extravasation still persists or site of injury is proximal main vessel with bifurcation (covered stent not an option) consider emergent surgery
    • Aggressive treatment with intravenous fluids, atropine, vasopressors, mechanical circulatory support if hemodynamics deteriorate

Burr Entrapment

  • Entrapment consists of burr embedding in a severe stenosis, preventing both further burr advancement and retrieval
  • Presence of diamond chips on the front, but not the rear, of the burr abets an opportunity for the burr to lodge within a lesion and become entrapped.
  • Once stuck and stalled within a lesion, retrograde ablation is not possible and friction associated with retrograde motion cannot be orthogonally displaced.
  • During ablation, the operator should be attentive to potential warning signs, which may be visual (lack of smooth advancement under fluoroscopy), auditory (pitch changes with variation in resistance encountered by burr), or tactile (resistance in advancer knob or excessive driveshaft vibration)
  • Incidence: 0.5% to 1%3
  • Prevention:
    • Meticulous relief of system tension before RA
    • Gentle pecking motions
    • Short ablation runs
    • Avoid excessive tortuosity
    • Do not stop spinning within a lesion
  • Treatment:
    • Apply forceful pull on the Rota wire with guide disengaged taking advantage of the wire’s 0.014 inches spring tip
    • Administer high dose of vasodilators and aggressively pull the Rota burr
    • Manual traction with on-Dynaglide or off-Dynaglide rotation
    • If above measures fail, potential catheter-based solutions to facilitate burr retrieval include
      • Obtain second arterial access and advance Fielder wire and a small (1~1.25mm) balloon distally, inflate at the level of Rota burr, then aggressively pull the Rota burr
      • Advance Guide extension catheters on the Rota Burr

7Fr Guide extension
Cut the Rota burr shaft at the connection outside the body, then advance 7Fr guide extension on the shaft until the Rota burr and pull aggressively.

6Fr Guide extension catheter
  • Cut the Rota burr and aggressively pull the Teflon covering sheath.
  • once done, then advance 6Fr Guide extension on the shaft until the Rota burr and pull aggressively
    • Subintimal tracking and reentry with balloon dilatation adjacent to the entrapped burr6, 7



ORBITAL ATHERECTOMY COMPLICATIONS

Differential sanding of Orbital atherectomy (OA) permits healthy tissue to flex away from the crown during orbit and can be used with speed selection options for low speed (80,000 rpm), high speed (120,000 rpm), or GlideAssist (5000 rpm).

Common complications associated with rotational atherectomy are:

  • Slow flow / No-reflow
  • Coronary Dissection
  • Coronary Perforation

Slow flow / No-reflow

Incidence: 0.9% in Orbit II trial and 0.7% in real work registry analysis.8, 9

The unique mechanism of action, differential sanding, combined with an average particle size of debris of 2.04 μm – smaller than a red blood cell – may contribute to lower rates of no-reflow and transient heart block with orbital atherectomy.10

Prevention
  • Optimal anticoagulant and antiplatelet therapy
  • Continue ViperSlide infusion
  • Always keep the crown advancing or retracting with slow advancement (1mm/sec)
  • Short run timetime ( <20 seconds)
  • Rest time = or > run time
Treatment
  • Ensure to keep the optimal blood pressure (SBP > 100Hg) and give fluids, vasopressors, and pacing as needed
  • Administer intracoronary vasodilators, such as adenosine, nitrates, nitroprusside, nicardipine, and verapamil administered distally in the vessel if necessary, via twin-pass dual access catheter
  • If hemodynamically unstable, place an intra-aortic balloon pump to augment coronary perfusion pressure

Coronary Dissection

  • Coronary artery dissection can be categorized by using NHLBI classification system (A-F)
  • Incidence: 3.4 % in Orbit II trial and 0.9% in Real world registry8, 9
  • Dissection can manifest with acute onset of chest pain, new EKG changes with ST elevations, and hemodynamic or conduction disturbances. Prevention
  • Avoid high speed run
  • Avoid in very tortuous coronary anatomy or > 2 bends exceeding 90° angulations
  • Use of ViperWire advance with flex tip in a setting of tortuous artery

  • Treatment
    • Stop ablation immediately
    • Reassess hemodynamic and patient status, then give vasopressor as needed
    • Completion of PCI with balloon angioplasty and stent placement if possible

    Coronary Artery Perforation

    • Coronary perforation is the most serious complication that can occur with OA.
    • With unique mechanism with pulsatile forces in OA, it can result in more significant tissue modification while having a higher risk of deep dissections and perforation.
    • Incidence: 0.7-2%8, 9, 11
    • Coronary perforations during OA can be graded in standard fashion using the Elis classification scheme (I-III).

    Risk factors: Very tortuosity, use of higher speed (120,000 rpm), presence of lipid rich plaque and smaller calcification arc (less than 2 quadrants in OCT/IVUS)12
    Prevention:
    • Use of lower speed (80,000 rpm)
    • Avoid excessive angulation( >2 bends exceeding 90° angulations)
    • Careful advancement when evidence of wire wrinkling from tension buildup is present leading to vessel straightening
    • Avoid high speed if the vessel diameter is less than 3 mm
    • Advance the burr slowly with a speed of 1 mm per second

    Treatment:
    • Stop further ablation immediately
    • Maintain wire position
    • Discontinuation of anticoagulation
    • Prolonged balloon inflation (10-15 min) proximal or at site of injury. If still bleeding, repeat prolonged balloon inflation
    • If extravasation persists, consider to use coils or covered stent
    • Reassess the perforation and patient status with angiogram
    • Be ready to do emergency pericardiocentesis if necessary
    • If extravasation remains present and/or site of injury is proximal main vessel with bifurcation (covered stent not an option), consider emergent surgery
    • Aggressive treatment with intravenous fluids, atropine, vasopressors, mechanical circulatory support if hemodynamics deteriorates



    References

    1. Sharma SK, Tomey MI, Teirstein PS, et al. North American Expert Review of Rotational Atherectomy. Circ Cardiovasc Interv. 2019;12(5):e007448. doi:10.1161/CIRCINTERVENTIONS.118.007448
    2. Naito R, Sakakura K, Wada H, Funayama H, Sugawara Y, Kubo N, Ako J, Momomura S. Comparison of long-term clinical outcomes between sirolimus-eluting stents and paclitaxel-eluting stents following rotational atherectomy.Int Heart J.2012; 53:149–153
    3. Tomey MI, Kini AS, Sharma SK. Current status of rotational atherectomy.JACC Cardiovasc Interv.2014; 7:345–353. doi: 10.1016/j.jcin.2013.12.196
    4. Shimony A, Joseph L, Mottillo S, Eisenberg MJ. Coronary artery perforation during percutaneous coronary intervention: a systematic review and meta-analysis. Can J Cardiol 2011;27:843–50.
    5. Al-Lamee R., Ielasi A., Latib A., et al. (2011) Incidence, predictors, management, immediate and long-term outcomes following grade III coronary perforations. J Am Coll Cardiol 4:87–95
    6. Sulimov DS, Abdel-Wahab M, Toelg R, Kassner G, Geist V, Richardt G. Stuck rotablator: the nightmare of rotational atherectomy.EuroIntervention.2013; 9:251–258. doi: 10.4244/EIJV9I2A41
    7. Tanaka Y, Saito S. Successful retrieval of a firmly stuck rotablator burr by using a modified STAR technique. Catheter Cardiovasc Interv.2016; 87:749–756. doi: 10.1002/ccd.26342
    8. Chambers JW, Feldman RL, Himmelstein SI, et al. Pivotal trial to evaluate the safety and efficacy of the orbital atherectomy system in treating de novo, severely calcified coronary lesions (ORBIT II). JACC Cardiovasc Interv. 2014;7(5):510-518. doi:10.1016/j.jcin.2014.01.158
    9. Lee MS, Shlofmitz E, Kaplan B, Alexandru D, Meraj P, Shlofmitz R. Real-World Multicenter Registry of Patients with Severe Coronary Artery Calcification Undergoing Orbital Atherectomy. J Interv Cardiol. 2016;29(4):357-362. doi:10.1111/joic.12310
    10. Sotomi Y, Shlofmitz RA, Colombo A, et al. Patient selection and procedural considerations for coronary orbital atherectomy system. Interv Cardiol 2016;11:33
    11. Parikh K., Chandra P., Choksi N., et al: Safety and feasibility of orbital atherectomy for the treatment of calcified coronary lesions: the ORBIT I trial. Catheter Cardiovasc Interv 2013; 81: pp. 1134-1139
    12. Kini AS, Vengrenyuk Y, Pena J, et al. Optical coherence tomography assessment of the mechanistic effects of rotational and orbital atherectomy in severely calcified coronary lesions. Catheter Cardiovasc Interv. 2015;86(6):1024-1032. doi:10.1002/ccd.26000


WP Feedback

Welcome!
Login and start providing feedback and commenting right away